AVINTEGRATORS 58d51738212b9d21a853afde False 68 11
background image not found
Found results for
'z shaped podium'
SPECKTRON Interactive Dig
SPECKTRON Interactive Digital Podiums Model: SDP600 All-in-one Interactive Multimedia Podium with Built-in Microphone (Wired/Goose neck & Wireless). Touch Control Panel for changing sources for Projector, Projector Power On/Off, Volume Control and Screen Control Switches. Details Call Manoj 9422277128
Podium Lectern with PA Sy
Podium Lectern with PA System with VHF Wireless MIC The Podium, lectern, portable pa system, wireless pa system, portable amplifier is suitable for meeting room, conference room, hotel, school. The lectern with audio system can provide an integrated sound system for meeting room The podium, lectern are built-in 60W amplifier, speaker, 2 gooseneck mic and 2 wireless microphones. The PA lectern can work with PA system and conference system. Built-in rated output 60W amplifier Built-in three 4" woofer and one 2" Tweeter A flexible gooseneck microphone and Lamp Two MIC, one Line and four AUX inputs and record input and output Bass, treble and volume controller External Amplifier and Speaker connector Available two optional VHF or UHF wireless MIC ( Hanheld or Lapel), Max transmission range 100ms AC power switch, light power switch AC 220V, 50Hz power operation Wooden Top, steel body and bottom, steel grill Black or white finish Recording output: 1V/0dB Tone control: bass 20dB/treble 20dB Transmission distance: 15-30m AUX: i) 1: -20dB, 1.5/10K ohms ii) 2: -15dB, 1.5/30K ohms iii) 3: -10dB, 1.5/50K ohms iv) 4: -3dB, 1.5/80K ohms Weight: 30kg
Introducing Sony Cost-eff
Introducing Sony Cost-effective laser projection with excellent picture quality, easy installation and low running costs The VPL-PHZ10 laser projector is a versatile, affordable choice for installation in a wide range of education, business, and entertainment environments. The powerful Z-Phosphor laser light source is teamed with Sony's advanced BrightEra 3LCD projection engine to deliver extremely bright, detail-packed WUXGA-resolution images with a generous 5, 000 lumens** of brightness and rich, stable colors. This laser light source allows up to 20, 000 hours* of virtually zero-maintenance operation without the worry of sudden lamp failures. An automated filter system cuts the hassle of regular dust cleaning. Near-zero maintenance needs are complemented by a range of energy-saving features, significantly driving down total lifetime ownership costs. Constant Bright maintains consistent light output levels throughout the laser's 20, 000 hours (at light output mode ""Middle"") recommended lifespan. Offering a stylish blend-in design and low fan noise, the VPL-PHZ10 fits smoothly into almost any environment — from academic institutions to corporate environments. Mount the projector at any angle, even on its side or upside down. Setup is easier than ever with a friendly new installation menu. **The new projectors have a total constant brightness of 4500 lumens for up to 14, 000 hours depending on usage environment. This enables users to experience the projectors’ original level of image quality for years, while achieving a maximum 5, 000 lumens brightness when the constant brightness mode is off. For Details call Manoj 9422277128
Understanding the Differe
Understanding the Differences between LED, LCD and DLP Projectors & How they Work ? Guide to help u best suited for your application DLP, LCD, and LED Technology The technology used in projectors can generally be broken down into two types: transmissive or reflective. Because LCD projectors pass light through the LCD panels rather than bouncing it away, they are considered a transmissive medium. A DLP projector uses mirrors to direct the light in an image, so it is considered to be reflective. The third type of projector discussed, an LED projector, is named for the light source, not the type of projection technology. How DLP Projectors Work DLP projectors rely primarily on a DLP chip (called a digital micromirror device, or DMD), comprised of up to 2 million tiny mirrors, no wider than one-fifth the width of a human hair. Each mirror in this chip is capable of independent adjustment, moving toward or away from the light source to create a dark or light pixel. At this point, however, the image is in grayscale. Color is fed to the DMD by a beam of light that passes through a spinning color wheel before it reaches the chip. Each segment of the color wheel delivers one color. Basic color wheels support red, blue, and green, whereas more advanced color wheels support cyan, magenta, and yellow. While these chips can create up to 16.7 million colors, a DLP projector with a three-chip architecture can deliver up to 35 trillion colors. After color reaches the DMD, the image is fed through the lens and onto the projection screen. Advantages and Disadvantages to DLP Projectors DLP projectors require less maintenance than LCD projectors because they have a filter-free and sealed chip design, which means dust cannot settle on the chip and cause an image spot. They are effectively immune to color decay. Furthermore, they are not subject to the misalignment that can occur in LCD projectors with a three-panel design, which require each panel to be in perfect position to combine the image at the proper angle. However, DLP projectors with slower color wheels may give off a rainbow effect, which is when bright flashes of color appear on the screen, like rainbows. Also, although the chip is sealed, other components are not, so dust can settle on the color wheel and affect image quality. Another disadvantage may be the poor viewing range. Most DLP projectors are not readily compatible with zoom lenses or lens shift functions, which means they are best suited to smaller environments. This would likely not be the best choice for a large home theater projector. How LCD Projectors Work LCD projectors use the same liquid crystal displays that create the images in watches and other electronic devices. Specifically, most LCD projectors use 3 LCD technology, a patented system that combines three liquid crystal displays. An image is created in a multistep process, which begins with the light source providing a beam of white light. The white light is passed to three mirrors, called dichroic mirrors, that are specially shaped to reflect only a certain wavelength o flight. In this case, the mirrors reflect red, blue, and green wavelengths. Each beam of colored light is then fed to an LCD panel, which receives an electrical signal that tells it how to arrange the pixels in the display to create the image. All three LCD panels create the same image, but they have different hues because of the colored light passing through the panel. The images then combine in a prism, creating a single image with up to 16.7 million colors that is passed through the lens and projected onto the screen. Advantages and Disadvantages to LCD Projectors The technology in LCD projectors is more established and reliable than film projectors. However, they may still require maintenance, as pixels can burn out and dust particles can interfere with image quality. On the other hand, LCD projectors have no moving parts, as DLP projectors do, and they are generally less expensive than their DLP counterparts. They also support setups in larger rooms where a greater projection distance is needed, because they are compatible with zoom lenses and lens shifts. This makes them great for larger, at-home cinema projects, as long as there is a smooth projection surface available. How LED Projectors Work LED projectors are defined not by the display technology used, but the lighting. In fact, some DLP projectors with "solid-state illumination" technology are actually LED projectors. Another type of projector, the pico projector, commonly uses LED technology as well. Pico projectors are essentially handheld devices that use LCoS, or liquid crystal on silicon, which is similar to an LCD panel but reflective rather than transmissive. In these cases, the projector replaces the traditional lamp with longer-lasting and more efficient LEDs, colored in red, green, and blue. In DLP projectors, this also replaces the color wheel technology, instead letting the red, blue, and green LEDs shine directly on the DMD chip. The Advantages and Disadvantages to LED Projectors The LEDs in an LED projector have a much longer life than traditional projector lamps, rated at 10, 000 or even 20, 000 hours as opposed to 1, 000 hours to 5, 000 hours. As such, the LED light source is meant to last the entire life of the projector without ever needing to be replaced. This is a big advantage in multimedia setups because replacing traditional lamps can be a major expense in projector maintenance. There is no warm-up or cool-down time needed because the LEDs are much more energy-efficient than traditional light sources, and they are also much quieter. This reduces maintenance and operating costs. To Know which projector is best for you walk in at Av Integrators-Nashik or call Manoj @ 9422277128